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Power law cumulative frequency (P) versus event size (/) distributions P(=[)~["“ are frequently cited as
evidence for complexity and serve as a starting point for linking theoretical models and mechanisms with
observed data. Systems exhibiting this behavior present fundamental mathematical challenges in probability
and statistics. The broad span of length and time scales associated with heavy tailed processes often require
special sensitivity to distinctions between discrete and continuous phenomena. A discrete highly optimized
tolerance (HOT) model, referred to as the probability, loss, resource (PLR) model, gives the exponent a
=1/d as a function of the dimension d of the underlying substrate in the sparse resource regime. This agrees
well with data for wildfires, web file sizes, and electric power outages. However, another HOT model, based on
a continuous (dense) distribution of resources, predicts @=1+1/d. In this paper we describe and analyze a third
model, the cuts model, which exhibits both behaviors but in different regimes. We use the cuts model to show
all three models agree in the dense resource limit. In the sparse resource regime, the continuum model breaks

down, but in this case, the cuts and PLR models are described by the same exponent.
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I. INTRODUCTION

In this paper we analyze a family of abstract, mathemati-
cal models which have been used to illustrate highly opti-
mized tolerance (HOT) [1-7], a mechanism for complexity
based on robustness tradeoffs in systems subject to uncertain
environments. HOT systems abound in nature and modern
technology, and are complex and highly structured. They ar-
rive at “optimized” or “organized” states through deliberate
design or biological evolution, and exhibit robust, yet fragile
(RYF) characteristics, the essence of HOT. That is, they are
robust to normal or common perturbations, yet may be ex-
tremely fragile to rare perturbations or design flaws, even if
the perturbations are small and seemingly innocuous.

Recently, HOT has been investigated in the context of a
variety of specific applications, including the Internet [8,9],
the electric power grid [10], wildfires [11], and biological
networks [12-15]. Typically, these studies involve a combi-
nation of simple abstract, analytically tractable representa-
tions, which focus on fundamental tradeoffs and derivations
of the power laws, with detailed, high-resolution simulation
models, aimed at pinpointing specific system and model fra-
gilities. Here we focus specifically on the abstract models
which have been used to describe HOT. We compare discrete
and continuum models in a common framework, and clarify
the approximations that are made and the ranges of applica-
bility of the models. This forces us to address certain funda-
mental issues in probability and statistics, including distinc-
tions between discrete and continuous distributions, and
properties associated with mixtures of distributions.

One key success of HOT is to offer an alternative perspec-
tive on the origins and ubiquity of complexity, and particu-
larly power laws. Mathematically, heavy tailed distributions
(e.g., power laws) often require special care because of the
broad range of spatial and temporal scales over which data is
sampled [16-21]. In many cases, conventional assumptions
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and methodologies associated with modeling and data analy-
sis are misleading and/or break down. One of the goals of
this paper is to illustrate how such problems can arise, and to
approach them in a manner which is mathematically rigor-
ous.

HOT has been compared to earlier work emphasizing
emergent complexity, where power laws arise from minimal
tuning, on an otherwise random substrate. In emergent com-
plexity power laws are associated with fractals and self-
similarity [22,23]. In many studies, HOT illustrates the dif-
ferences between organized and emergent complexity by
using percolation forest fire models from physics [24-26],
but including a minimal form of optimization (intended to
capture design or evolution) and robustness tradeoffs
[1,2,5,6,27]. This produces power laws (in better agreement
with data) that arise from highly organized and self-
dissimilar structures, the opposite of self-similarity.

All of the abstract HOT models follow the same basic
mechanistic description involving optimization of tradeoffs
in an uncertain environment. Each begins with a
d-dimensional substrate representing the system. Each event
(e.g., a power outage or fire) is triggered by some small
perturbation or spark (typically chosen from a nonuniform
distribution) which initiates a cascading failure, resulting in
the loss of some portion of the substrate. All of the models
considered here assume the loss (or cost) associated with an
event scales linearly with the event size. Alternative cost
functions give power laws in cost, not necessarily raw event
size [1]. Thus cost functions that heavily weight large events
can lead to truncation of the power laws [6].

In HOT, resources are allocated to create barriers limiting
propagation of the cascading failure events in a manner
which optimizes the cost function (minimizing loss or maxi-
mizing yield). There is a limited number of resources avail-
able, and this constraint is modeled in one of two ways. The
first method places a fixed limit on the total resources avail-
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TABLE I. The HOT continuum, PLR, and cuts models predict power laws based on optimal allocation of
limited resources to minimize loss in an uncertain environment. Different assumptions in the continuum and
PLR models lead to different exponents in the dense and sparse resource regimes, both of which can arise as
(opposite) limits of the cuts model. The PLR model can be extended to the dense resource limit (Sec. V),
where it agrees with the continuum and cuts model. The PLR cumulative probability P(=[) assumes densely
sampled data (Sec. III). To increase readability, constant factors are set to unity in the equations for yield ¥

which is optimized.

Continuum PLR Cuts
Probability Continuous Discrete p; Continuous
p(x) p(x) cut
into p;
Resources Continuous Discrete Discrete
r(x) v cuts
Constraint Resource Resource N cuts
cost R= limit
Jr(x)dx >r<R
Losses Continuous Discrete /; Discrete /;
1(x)
Optimize Y=1-[pl-R Y=1-2p; Y=1-2pl
Power law [-(+1id) - 172 as [—0, 7" as [—oe (d=1)
P(=I) versus [

able. The second weights resource use alongside other costs
or losses, which are associated with the events themselves,
by including an explicit resource term in the cost function.
Here the key issue is to account explicitly for resource use.
The specific form of the constraint does not play a significant
role in determining the size distribution.

In HOT, optimization of the resource allocations subject
to the constraint represents design or evolutionary tradeoffs
in systems faced with a spectrum of disturbances. Because
resources are constrained and often sparse or expensive, op-
timal solutions make efficient use of the resources available,
resulting in HOT states characterized by structured, compact,
d-dimensional regions surrounded by (d-1)-dimensional
barriers. In addition, for a broad class of distributions of
disturbances (e.g. Gaussian, exponential, and Cauchy), mini-
mization of the average loss results in heavy-tailed, power
law distributions in the sizes of the events. Newman et al. [6]
emphasize however that the specific exponents characteriz-
ing the decay of the power law distribution in HOT models
can be different.

In this paper we focus on three models for HOT which are
among the simplest, and most analytically tractable ex-
amples. Table I summarizes their basic properties, which will
be described in detail in the following sections. In each case,

 Probability p represents uncertainty in the environment.

e Loss / represents the volume or size associated with an
individual event, which is directly proportional to the cost of
that event.

e Resources r provide mechanisms to limit losses.

» Constraints are imposed on the resources.

e Optimization of the resource assignments subject to
constraints leads to the HOT state.

e Power laws in the cumulative event distributions,
P(=1) versus [, are characteristic of these optimal solutions.

All of these models are motivated by studies of the HOT
version of the percolation forest fire model [1,2]. The “all-
or-nothing” nature of percolation models, where connected
clusters are completely destroyed, leads to resource-loss re-
lationships which are explicit functions of the system dimen-
sionality d, and optimal solutions where resources are de-
ployed along (d—1)-dimensional barriers.

Other types of HOT models are possible and have physi-
cal relevance. For example, barriers could be composed of
diffuse d-dimensional “sponges” instead of (d—1)-dimen-
sional cuts. Resources could be deployed dynamically de-
pending on the state of the system using feedback control
[27], like airbags in car crashes. Also, resources could be
viewed as point sources or “sprinklers” which inhibit the
growth of loss regions. For these models, the class of pos-
sible resource-loss relationships is very broad. In each case
we must carefully evaluate the physical system we are mod-
eling and deduce the appropriate resource-loss relationship.

Because we wish to generate simple models with few as-
sumptions about the underlying physical systems, the models
considered here are those motivated by percolation models
where (d—1)-dimensional barriers arise naturally under opti-
mization. Additionally, these models have been discussed
previously elsewhere, and the goal of this paper is to develop
a more rigorous and unified mathematical framework for this
set of models which has recently been introduced into statis-
tical physics and complex systems theory.

The most well studied of these are the continuum model
[1], generalized by Newman er al. [6], and the probability
loss resource (PLR) [3] model. Their abstractions differ in
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subtle, yet important ways, leading to differences in the pre-
dictions. The continuum model aims to describe the con-
tinuum limit of the HOT percolation forest fire model [1],
building on lattice models from statistical physics [25,28],
and introducing a mean-fieldlike analysis of the continuum
limit. In the continuum model all aspects of the system are
described as smoothly varying functions on the substrate.
The PLR model is a generalization of the Shannon source
coding theory [29] from information theory [30], perhaps the
simplest design model in engineering. The PLR model be-
gins with discrete event categories i, each of which has a
characteristic probability, resource allocation, and resulting
loss. Like the continuum model, the cuts model [1,8] can be
thought of as the limiting description of a lattice model as the
lattice size becomes infinite. The cuts model represents space
continuously (like the continuum model) but divides it into
discrete regions (like the PLR model) using sharp barriers,
i.e. cuts.

A key distinction between the models is their predictions
for power law exponents. The continuum model predicts a
power law in P(=[) with exponent a=1/d+1, while PLR
predicts an exponent of aw=1/d for the same distribution of
sparks (assuming densely sampled data). We show the first
two models match solutions in different limits of the cuts
model with an exponential distribution of sparks. In d=1 the
cuts model predicts an exponent of @=2 in the limit of small
events and a=1 in the large-event limit. Thus the cuts model
captures the power laws predicted by the other two models in
the limit of small (continuum) and large (PLR) events.

Analysis of the cuts model provides a unifying picture for
all the models, and a concrete illustration of how certain key
approximations made in the first two models can break
down. We show that when the PLR and cuts models have
sufficiently similar assumptions, their results agree as ex-
pected. In the dense resource regime limit (described by the
continuum model), all three models agree. The cuts model
also illustrates how the exponent describing small events de-
parts from this dense resource limit as the density of re-
sources and barriers becomes lower.

In the remaining sections of this paper, we first summarize
results for the continuum (Sec. IT) and PLR (Sec. IIT) models,
with special attention to derivation of the power laws, and
specific features which will be useful for comparing models.
We also discuss mathematical subtleties which can arise in
taking continuum limits in systems with sharp barriers, as
well as issues that arise in comparing continuum versus dis-
crete models, and distributions composed of finite mixtures
of probability distributions. In Sec. IV we review and extend
the cuts model and in Sec. V we compare it to the other
models. We show that the event size distributions for the
PLR and cuts models agree when their assumptions are
forced to be similar. They both agree with the continuum
model in the limit of dense resources and small event sizes.
For the cuts model with a power law distribution of sparks,
the small event limit is described by a power law in which
the exponent depends on the distribution of sparks, ranging
from the limiting value of @=2 (which we obtain for an
exponential spark density) for an infinitely steep power law,
to @=1 (sparse resource limit, and in agreement with PLR)
when p(x)~1/x. Furthermore, for both exponential and
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FIG. 1. Sample configuration of the percolation forest fire model
in d=1. Occupied sites (black) correspond to trees, and vacant sites
(white) correspond to firebreaks. When a spark hits an occupied site
it burns all trees in the connected cluster (labeled [;) of occupied
sites containing the initiating site. Fire terminates in each direction
upon encountering a firebreak, or cut, labeled c;.

power law distributions of sparks, we find that the event size
distribution for the cuts model agrees with the PLR model in
the limit of large event sizes, where the distribution is clearly
discrete. In this case the agreement between models depends
on the assumption of a sufficiently well sampled data set,
which would only arise in the cuts and PLR models due to
mixtures. In Sec. VI we return to the original HOT lattice
model, and illustrate a subtle pathology which arises in the
continuum limit of the lattice model in the absence of an
explicit resource cost or constraint. In Sec. VII we conclude
with a discussion of our results, and the relevance of the
different resource regimes in the context of observed data.

II. CONTINUUM MODEL

The continuum model was suggested as an approximate
limiting description of the HOT forest fire percolation lattice
model by Carlson and Doyle [1]. It was later studied along-
side large lattice model simulations by Newman et al. [6].
The definition of the model most conveniently begins with
the lattice model, which we will return to in Sec. VI. Strictly
speaking, the continuum model is an approximation to the
lattice model based on scaling arguments. It captures the
power laws observed in the HOT lattice model in the limit of
large, finite lattice sizes, and allows the size distribution to be
calculated analytically.

Consider a d-dimensional space, with positions labeled by
the d-dimensional vector x (these are discrete sites on a hy-
percubic lattice, each labeled by d integer indices i,j,k,...,
with x=(i/N,j/N,k/N,...), where N is the number of sites
along each axis of the lattice). In the percolation lattice
model, each position (site) is either occupied by a tree, or
vacant (firebreak). Environmental uncertainty is represented
by the probability p(x) that a spark lands at site x. A spark
ignites a fire that spreads throughout the nearest neighbor
connected cluster of trees in all d directions, but terminates at
firebreaks. The resulting fire size is the total number of sites
in the burned patch /(x) and the value of /(x) is clearly con-
stant within each contiguous patch. A sample lattice configu-
ration in the special case d=1 is illustrated in Fig. 1. Occu-
pied sites (black) are trees and unoccupied sites (white) are
firebreaks. Event sizes [; correspond to the number of occu-
pied spaces between firebreaks, or cuts, labeled c;.

HOT configurations optimize the layout of vacant and oc-
cupied sites to maximize yield Y, defined to be the average
number of occupied sites which remain after a single spark
lands on the lattice [averaging over the spark distribution
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p(x)]. For small lattices, it is possible to compute the glo-
bally optimal solution [5]. For large lattices the solution be-
comes computationally intractable (and not especially infor-
mative). Instead, a wide variety of constrained optimization
schemes have been investigated [1,2,5,7,15], all leading to
similar results. Firebreaks are concentrated in regions of high
spark probability, so that only small fires occur in regions
where sparks are common, while large fires occur in regions
where sparks are rare.

The specialized, patterned HOT configurations reflect pat-
terns in the perturbing environment. This is in sharp contrast
to the traditional forest fire percolation model studied in sta-
tistical physics [28], where configurations are essentially ran-
dom, aside from a tuned, or “self-organized” average critical
density [22-26]. The contrasts between the HOT and self-
organized critical lattice models are discussed in detail in
[1-5], and will not be our emphasis here.

The HOT lattice model was introduced to illustrate the
HOT mechanism, and is pedagogically useful in illustrating
the emergence of (d-1) barriers on the d-dimensional sub-
strate, as well as the high concentrations of barriers in re-
gions where perturbations are common. All of the other mod-
els considered here retain these key features, but each
explicitly accounts for the cost of resources in a different
way. More importantly, each makes different approximations
in representing continuum versus discrete spatial features of
the lattice model, which lead to the different predictions for
the event size distribution.

In the continuum model the integer i/N components of
the d-dimensional vector positions x are replaced in the limit
N— by real valued components. The occupied (tree) and
vacant (firebreak) lattice sites are replaced by a resource den-
sity r(x), representing the local density of firebreaks. A func-
tion /(x) represents the size of the loss which occurs when a
spark lands at position x. A key approximation relative to the
original lattice model is clearly made in the continuum
model, which represents r(x) and /(x) as continuous func-
tions. The idea is to use a scaling relation, motivated by the
lattice model, to mimic the manner in which higher resource
densities lead to smaller fires in a given region, without ac-
counting in detail for the specific configuration.

To derive the distribution of fire sizes for the continuum
model, we follow the elegant derivation of Newman et al.
[6]. The size of a firebreak surrounding a given patch /(x) is

r(x) = gdl ()41, M

where g is a geometric factor of order unity that depends on
the shape of the patch. It is in Eq. (1) that the dimensional
relationship between resource and loss is captured. In the
continuum model the total resource use is given by

R:fr(x)dx, (2

where the integral is over the d-dimensional substrate. In the
continuum model, this cost enters explicitly into the yield
function. Normalizing Y by the total volume of the substrate
(i.e., Y=1 corresponds to a fully occupied forest, with no
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FIG. 2. Schematic solution of the continuum model in d=1.
Small event sizes /(x) are associated with positions x of high spark
probability p(x). Eliminating x and integrating leads to the event
size distribution P(=1) as described in the text. A key distinguishing
feature of the continuum model is that the event size function /(x) is
a priori a continuous function of x.

fires or firebreaks), and averaging over the distribution of
sparks p(x), we write the expected yield as

Y=1 —cfp(x)l(x)dx—aR, (3)

where c is the cost per unit area (or generally, d-dimensional
volume) of forest, and a is the cost per unit length [or
(d—1)-dimensional volume] of firebreaks. This yield func-
tion is motivated by tradeoffs inherent in the original lattice
model, where the resources are empty sites, and the cost of
firebreaks is the yield penalty in initial density associated
with creation of vacancies. However, unlike the Ilattice
model, it includes a nonvanishing resource term explicitly in
the yield function, and allows the constants a and ¢ to scale
differently with dimension d. This fortuitously omits a pa-
thology which results from the difference in scaling between
the compact, d-dimensional clusters of trees, and the
(d—1)-dimensional firebreaks which arises in the lattice
model as N— . We discuss this in more detail in Sec. VI.
The optimal allocation of resources r(x) maximizes the
expected yield. Optimizing resources is equivalent to opti-
mizing over event sizes because they are explicitly related
via Eq. (1). To obtain the solution, we assume that /(x) is a
continuous function of the ignition site x, and set the func-
tional derivative 8Y/8l(x) equal to zero. This leads to

I(x) = Cp(x)~ D), (4)

where C is a constant that depends on a, ¢, and g.

A schematic solution in d=1 is illustrated in Fig. 2. It is
important to note that the continuum model departs from the
original lattice model in representing /(x) as a continuous
function of x. For a given configuration in the lattice model,
I(x) assumes a constant, finite value for each contiguous
cluster of occupied sites. Therefore /(x) in that case, is piece-
wise constant. The continuum model represents /(x) as con-
tinuous over the entire space, leading to Eq. (4). It is the only
one of the models we consider which builds in this assump-
tion.

It is also possible to calculate the probability density p(7)
of fire sizes for the continuum model. Again, assuming /(x)
is continuous we obtain [1,6]
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d%x dx dp dx (4 1/d)

p(D) = p(x) 1l =p(x) dp dl - [p(X) a0 }C ! . (5)
where C’ is a constant that depends on d, ¢, a, and g. New-
man et al. thoroughly investigated the behavior of p(/) and
found that the scaling behavior is dominated by the factor of
-+ while the factor p(x)d®x/dp generates at most loga-
rithmic corrections for a broad class of probability distribu-
tions p(x) [6].

Since the probability density p(I) is continuous, the cumu-
lative distribution of events of size greater than or equal to /,
P(=I), is proportional to [~*'4) Therefore, for a one-
dimensional substrate, the continuum model predicts a slope
of a=2 for the cumulative distribution of events. Table I
summarizes the properties of this model.

III. PROBABILITY LOSS RESOURCE MODEL (PLR)

The PLR (probability loss resource) HOT model is a gen-
eralization of Shannon source coding theory for data com-
pression [29], the simplest, most elegant design theory in
engineering. It is the simplest model illustrating HOT [3],
and is based on optimal allocation of limited resources, with
an explicit, fixed cap on the total resources available. It re-
tains a dimension-dependent relationship between resources
[(d—1) dimensions] and loss (d dimensions), but otherwise
replaces the explicit spatial variable x with a more abstract
notion of event categories i. The idea is to group similar
conditions, from the common to the rare, into a category,
represented by the relative probabilities p;. Because this ab-
stract PLR model is not defined in terms of spatial positions,
it is applicable to a wide range of phenomena where spatial
information is not available.

The PLR objective is to allocate resources in a manner
which maximizes yield Y averaged over a spectrum of pos-
sible events

Y=1—cEpil,-| l;=f(ry), Eri$R. (6)

Here ¢ is a constant, and i, 1 <i=<N, indexes the finite and
discrete set of probabilities p;, assumed to be in descending
order, with corresponding loss /;. Normalized, the cumulative
P(=1;)=2,;=,p; is the rank order divided by the total number
of events in a data set, from which corresponding values of
p; may be deduced. We will interpret the p; as probabilities,
so Y is average yield, but in general the p; could be any
weights assigned to create a cost function.

The probability p; of each category is fixed, and a total
resource allocation r; is made to the event category i, result-
ing in events of size [; for the category (i.e., r; is the total
resource allocation to all the events in event category 7). The
r; is chosen to minimize the average event size, averaged
over the spectrum of possible conditions {i}. The only inter-
action between events is that the sum of all resources is
limited by Zr;=<R. This means that any reasonable design
will devote more resources to the categories of common
events so that they yield small losses, leaving relatively few
resources for rare events.

Unlike explicitly spatial lattice models, the PLR model
presumes a mean-fieldlike independence of events. However,
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FIG. 3. Resources allocated to event category i in the PLR
model in d=1 divide a region of fixed length L (horizontal axis)
into events of equal length /;, characteristic of the category. In the
optimal solution, regions of high probability (vertical axis) are al-
located more resources, resulting in smaller events.

a lattice abstraction (which should not be interpreted as a
literal gridding of the forest) can be used to derive the rela-
tionship /,=f(r;) between resource allocation and loss for the
event categories {i}. Imagine a large, finite d-dimensional
lattice which is an abstraction of a space representing a
single condition category i. The lattice is of length L on each
side, and the total volume L¢ serves as the large scale cutoff,
i.e., the size of the largest possible event. The value of p; is
the total probability of hitting any part of the lattice for cat-
egory i, and the probability of hitting any one of the cells
within category i is equal. Resources r; represent the total
allocation of vacant sites within the ith category.

Because the spark distribution p; is uniform within each
category, the optimal use of resources (vacant sites) defines a
collection of equally spaced (d-1)-dimensional surfaces,
one lattice spacing wide in the remaining dimension, on an
otherwise occupied lattice. This defines a set of compact,
contiguous cells, all of equal size /;, for category i. For ex-
ample, in d=1, the barriers correspond to a single unoccu-
pied site between contiguous occupied sites of equal length.
This is similar to the lattice shown in Fig. 1, except the
occupied regions /;,l,,..., would all have the same length.

Suppose a resource allocation of size r;=2 /L& (number of
vacancies) is made to category i, arranged as ¢ equally
spaced cuts, spanning the full length of the lattice L in each
dimension d. Then the event size [; for category i is [;
=[(L/¢)~-1]%. Eliminating ¢ yields a relationship between
event size [; and the resource allocation r;, which scales like
I~ ri_d. Here L is simply the constant subregion lattice length
scale, and the key result is the dimensional relationship be-
tween resource allocation (to the event category as a whole)
and the corresponding characteristic loss size for that cat-
egory.

This process is illustrated for d=1 in Fig. 3. Three event
categories (i=1,2,3) are shown, in order of descending
probability p; > p, > p;. Here the constant subregion size L
is the identical horizontal length of the line segment associ-
ated with each region. The vertical height of each box re-
flects the probabilities p; (and is not related to any spatial
dimension or length scale). Resources r; are allocated to each
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region, with r; >r, > r3, and divide each region into line seg-
ments /; equal size, with [} <l,<I;.

Incorporating a cutoff at small event sizes, and normaliz-
ing so that 0<r;<1 with f(1)=0, in d dimensions we write

£(r) = g(r;d— 1), d>0, (7)

which incorporates the scaling determined above, and
uniquely determines f(r;) up to the parameter y. As in the
original Shannon theory, we relax the constraint that the r;
take integer values. This is an extremely simple and tractable
model with essentially only one parameter, the dimension of
the substrate, where events are characterized by d-dimen-
sional, compact regions, enclosed by (d—1)-dimensional pe-
rimeters.

Given a fixed resource budget R, the goal outlined in Eq.
(6) is to optimize the division of resources r; to maximize
yield, by minimizing the expected loss 2,p;l;, subject to the
resource versus loss relationship in Eq. (7). This is accom-
plished using standard constrained optimization methods
(Lagrange multipliers). Setting the gradient of A(Zr,—R)
+2p;f(r;) equal to zero yields —p;f’(r;)=\, which equalizes
the expected marginal loss and can be solved for the ;. Then
the optimal N saturates the resource constraint with 2r;=R,
r;<1, yielding

=R S ) ®
J

so that

Y _ d
=g e S g ] o

J
and

sz-1[R-d(2ply/<1+d)>1+d_ EP,}- (10)

i i

Inverting Eq. (9) yields a relationship between the event type
and corresponding probability

1
pill)=—(C+ 1)~ (11)

where @=1/d and C is a constant [which depends on v, d,
and R in Eq. (7)] which sets the small size scale in the re-
source versus loss relationship. For simplicity, we will as-
sume throughout that C is sufficiently small that we can ne-
glect any small size cutoff.

The PLR model is defined in terms of noncumulative
probabilities p;, but to reliably compare with data it is nec-
essary to use cumulative distributions. Since p;o ([;)~ 1+
[Eq. (11)], the naive expectation is that the cumulative dis-
tribution P(=1;) «(1;)~*. However, this is not necessarily the
case for discrete data sets, where cumulative distributions are
attained by summing, rather than integrating the density. In
fact, in the discrete case, the cumulative distribution can be
steeper, shallower, or have the same decay properties as the
density, depending on how densely the data is sampled.
Thus, unlike the case of a continuous probability density,
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there is no general relationship between discrete probability
distributions and their noncumulative densities. We cannot
simply assume that since p;(l;) is a power law with slope
—(1+a), that P(=1;) is a power law, let alone with slope —a.
This issue is fundamental in the theory of discrete probability
distributions, and also arises for the cuts model (Sec. 1V),
which is also inherently discrete, and in comparing PLR with
the continuum and cuts models (Sec. V).

Furthermore, in making comparisons with data, use of the
density, rather than the distribution does not solve the prob-
lem. Use of the cumulative distribution is in fact preferable,
because it avoids statistical anomalies associated with bin-
ning. The cumulative distribution simply corresponds to a
normalized plot of the ranked (by size) order of events in a
catalog, which does not introduce any statistical biases.

Although the PLR model can be used to generate a cumu-
lative event probability function P(=[) which is inherently
discrete, most data sets exhibiting power laws in the cumu-
lative event probability as a function of size are sufficiently
dense to exhibit a fairly convincing unit difference in slope
between the density and the cumulative distribution. This
leads us to determine circumstances under which the naive
expectation of unit difference in the exponent between the
cumulative distribution and the noncumulative density is in
fact correct.

This requires sampling in the data set which is sufficiently
dense that integration of the density to obtain the cumulative
distribution is a good approximation to computing the dis-
crete sum. One possible explanation is to hypothesize that
most data sets are mixtures from many different systems, or
the same system averaged over long times. Thus a complete
treatment of how to assess whether data is consistent with a
PLR mechanism ultimately requires a treatment of mixtures
[31,32].

The simplest scenario corresponds to a mixture of discrete
power law distributions with the same exponent. This gener-
ates a power law with that same exponent, but possibly dif-
ferent short- and large-scale cutoffs, and provides a simple
and unambiguous way to connect the PLR p, o (,)"1+% with
P(=1;) (1)~ This scenario assumes sufficient data up to
some cutoff size L, binned with fixed Al to treat the result-
ing p; as binned samples from a continuous density. Then we
can define

P(=1) =2 (+ O = 1) = 2 (1j+ O) AL
= e

(12)

which in the limit of large data sets approximates a continu-
ous P(=I) satisfying

L
P(=1) « f p(x)dx
I

L
= f (x+C)“ldx < [(1+C)*=(L+C)™9]
1

(13)

leading to the exponent =1 in d=1. Table I assumes these
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properties of the PLR model. Note, however, that when the
PLR model is used and the /; are not densely sampled, then
the above calculations for the cumulative distribution need
not hold.

IV. CUTS MODEL

The cuts model [1,8] is a simple, analytical model that
helps clarify the discrepancy between the power law expo-
nents predicted by the continuum and PLR models. We focus
on d=1 for this case and the comparisons. Higher dimen-
sional generalizations of the cuts model are possible, but
correspond to constrained optimization schemes (e.g., the
grid design problem in [1]) or choices of p(x) with special
symmetries. As we show below, the other two models as
formulated above agree with the cuts model in (different)
asymptotic regimes. We also use the cuts model to formulate
an extension of the PLR model that describes the dense re-
source limit, where all three models agree.

Like the continuum model, the cuts model is naturally
understood as a continuum limit of a percolation lattice
model, but it is a variant of percolation which includes an
explicit constraint on the resources, as in PLR. The cuts
model removes the assumption that the event sizes I(x) are
nearly continuous (an approximation made in the continuum
model), which makes it possible to span both the dense and
sparse resource regimes in a single formulation of the model.

Consider a percolation forest fire lattice model in one di-
mension. Resources are vacancies that act as dividers or cuts
between connected clusters of occupied sites. An example of
this is shown for d=1 in Fig. 1. If we take a continuum limit
by rescaling into a finite interval and taking the number of
lattice sites to infinity, then the cuts become infinitesimally
thin, zero-dimensional dividers between continuous con-
nected regions of unit density.

The cuts model is defined on position space x, x
€ [0,A]C R, where A is the large-scale cutoff. A discrete set
of zero-dimensional cuts divide the axis into a set of separate
one-dimensional line segments. The model imposes the con-
straint that the maximum number of cuts is a natural number
N. Analogous to the PLR model’s explicit constraint on total
resources (Zr;<R), optimal solutions make full use of all
available resources (2r;=R in PLR and # cuts=N in cuts).
Events are triggered (sparked) according to a spatial prob-
ability function p(x) as in the continuum model, propagating
along the connected cluster, between adjacent cuts. The po-
sition of the ith cut is labeled c; and ¢ is at x=0. The cut
positions define discrete line segments /; and the correspond-
ing event probabilities p;

li=ci—ciy,

piEJi p(x)dx. (14)

i-1

In other words, the cuts map the continuous spatial function
p(x) defined on [0, AJCR into a discrete set of events with
probability p; given by the cumulative probability of spark-
ing the segment of length /; between adjacent cuts. This map-
ping is illustrated in Fig. 4.

PHYSICAL REVIEW E 72, 016108 (2005)

¢=0 ¢ I, ¢ i

FIG. 4. Tllustration of cuts model mapping from probability
function p(x) which is a continuous function of the spatial coordi-
nate x to a discrete set of probabilities p;. The cut positions chosen
to optimize a yield function, Y or Y'.

Carlson and Doyle [1] maximized the yield function

Y=1-cX pi; (15)

with respect to the cut positions. Note that this is the same
yield function used in the PLR model. They found an itera-
tive solution for the optimal cut positions in the continuum
limit

pi+1i p(c) =pix1 = Lp(cy). (16)

Unfortunately, analytical solutions to this equation involve
transcendental functions even if there is a simple functional
form for p(x).

The problem simplifies if we consider a slightly modified
cost function, replacing J=2p;; in (15), with J'=2p'l,
where p! is the probability of events of index greater than i,
pﬁEE;.V:ip ;- This cost function can be naturally motivated in
many cases, such as web layout [8]. Furthermore, as we
show below, results obtained for the power laws using this
modified cost function are equivalent to the original cost
function in the small and large size asymptotic regimes.

With the modified cost function, we can define the yield
as

Y’:l—czpﬁli, (17)

and optimize the yield with respect to the cut positions c¢; by
setting dY’/dc;=0. Using the definitions from Eq. (14), the
following iterative equations hold for the optimal cut posi-
tions:

pi=lip(cy). (18)

This equation is simpler to iterate than Eq. (16). Its solutions
are no longer transcendental functions, and optimal /; for
general p(x) can easily be found using simple numerical
techniques. Note that the number of cuts N does not appear
explicitly in the recursion relation. Instead, the equation re-
quires two initial cut positions, ¢; and c;_; (which is the
lower limit of integration for the integral defined as p;).
These initial cut positions define a length scale, [;=c;,—c;_;.
This length scale together with the large-scale cutoff A de-
termine the total number of cuts N. Therefore, choosing two
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FIG. 5. Event size I(x) as a function of x for the cuts model.
When the value of /(x) is small (and x is small) the function is
nearly continuous but when the value of /(x) is large the function is
piecewise constant, displaying obvious discontinuities.

initial cut positions is equivalent to specifying N for a fixed

A.

A. Cuts model for an exponential distribution of sparks

To solve the recursion equation analytically we first
choose p(x)=Ae™, which leads to an especially simple so-
lution

pi=e N, (19)

As with the other two models, we are interested in the prob-
ability distribution of event sizes p(/;) and the cumulative
probability distribution P(=/,). In this case, solving for P(
=[;) is transparent

P(=1) =p;. (20)

We substitute p(x) into Eq. (18) to find a recursion relation
for the optimal region sizes

eMi— 1

N

lig = (21)
Notice that the event sizes increase exponentially as [; be-
comes large. We use [; to construct the function /(x) which is
defined as the event size /; when a spark hits site x. This
function is piecewise constant between cuts, as illustrated in
Fig. 5. For large x, the function exhibits large discontinuities.
For small x, while still discrete, it approaches a continuous
function.

The slope of P(=1;) on a log-log plot can be easily cal-
culated in limiting cases by substituting Eq. (21) into Egq.
(19), dividing A In p! by A In /;, Taylor expanding, and drop-
ping higher order terms. The limiting case describing the
large event sizes, with sparse resource allocations, is dis-
cussed in [8]. Following the derivation there

. Inpl,, —-Inp! In e — In e7MCi-1
Iim —— = lim -
l—w Il —1Inl; e In((eMi—1)/\I)

— N

l

=1 =—
1% In(eMi— 1) — In N

(22)

The opposite limiting case, describing small events, and high
resource densities, can also be calculated. We find
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FIG. 6. Numerical results for the cuts model with an exponential
distribution of sparks. (a) shows the cumulative probability P(=1)
(large circles) and probability density p(l/) (small squares) versus
event size [ for the one-dimensional exponential cuts model [i.e.
p(x)=\e™] with the modified yield function (using p}). Points are
calculated from Eq. (18) iterated backward and forward from the
initial cut positions ¢;=300, ¢;,_;=250. The fourth iteration forwards
results in a data point too large to compute. The solid line illustrates
a power law with exponent —2, and the dashed line illustrates ex-
ponent —1. (b) is an enlarged view of (a) in the region where [ is
small. For small /, the cumulative probability has a steeper slope
than the probability density, but for large / their slopes are the same.
Again, the solid line illustrates exponent —2 and the dashed line is
-1.

Cmpli-lnpl =N
lim =lim v
[;—0 In li+l —1In li [;—0 ln((e L= 1)/)\11)
— N
=lim —————-=-2. (23
[;—0 ()\ll)z ( )
In| 1+ —
2N,

We can also investigate the asymptotic behavior for small
and large events in this model numerically by choosing two
initial cut positions ¢; and c¢,_; and then iterating Eq. (18)
backward and forward. The cumulative probability P(=1[,)
(large circles) versus the event size /; is shown in Figs. 6(a)
and 6(b), and the limiting power law behaviors in the small
and large event size limit derived analytically are apparent.
Notice that there are only a few points in the slope=—1 re-
gime in Fig. 6(a). This is because the event sizes are increas-
ing exponentially as shown in Eq. (21). We can populate the
tail of this distribution by combining many data sets with
slightly different initial cut positions, ¢;, ¢;_;, and the results
are shown in Fig. 7. This models a mixture of data from
systems with the same number of resources N but different
large scale cutoffs, A.

Figures 6(a) and 6(b) also show the probability density
p(l;) (small squares) versus the event size /;. For small /, the
cumulative probability has a steeper slope than the probabil-
ity density, while for large / the points are very nearly the
same and have the same slope. This occurs because the prob-
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FIG. 7. Cumulative probability P(=[) versus [ for a mixture of
data sets with slightly different large scale cutoffs A. These data
sets are generated as in Fig. 6, but sampling the initial, seed cut
positions randomly, and combining data from the different choices.
The second cut position ¢; was chosen from a uniform distribution
on [200,300] and the distance between the first and second cut I,
was chosen from a uniform distribution on [25,50]. Note: ¢;_;=c;
-1,

ability density for the cuts model is inherently discrete. As
discussed in Sec. III, if a probability density is smooth and
continuous, the corresponding cumulative probability can be
found by integrating the density. For example, if p(x) is a
power law with exponent —(a+ 1), then the cumulative prob-
ability is a power law with exponent —«, as we intuitively
expect. This simple, intuitive result also applies when data
consists of a set of discrete probabilities p; which are suffi-
ciently dense that we can use them to derive a continuous
probability distribution as we did in the PLR model Eq. (12).
However, in Fig. 6 the discrete probabilities p; are not dense,
and the relationship between P(=I) and p; is not the same as
in the continuous case. As [; becomes large, Eq. (21) indi-
cates /;,;>1;, and p;,; <<p;. The cumulative probability dis-
tribution becomes the same as the probability density in the
tail

P(=1)=2 p;=p;. (24)

j=i

This asymptotic behavior is verified in Figs. 6(a) and 7.

B. Cuts model for a power law distribution of sparks

We can also analytically solve for the optimal cut posi-
tions in the case of a power law distribution of sparks:
p(x)=ax~@*V [33]. Using the same procedure as in the ex-
ponential case, we find the following results for the discrete
probabilities and the corresponding event sizes:

pi=(cio)™ = (c)™,
_ Db
li_P(C,‘) @5)
so that
(cim)™ = ()™
i= % (26)

For a>1, the slope of P(=I) versus [/ on a log-log plot
approaches —2a/(a+1) as [ becomes small. As [ becomes
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FIG. 8. Cumulative probability P(=[) (large circles) and prob-
ability density p(/) (small squares) versus event size [ for the cuts
model with power law spark probability density with parameter a
=2 [in p(x)=ax~@*D]. Points are calculated from Eq. (26) iterated
forwards 2000 times from the initial cut positions c;_;=1,c¢;
=1.001. The solid line illustrates a power law with exponent —4/3,
and the dashed line illustrates exponent —1.

large, the slope approaches —1. These asymptotic relation-
ships are derived in Appendix A. In addition, as a ap-
proaches infinity the initial probability density p(x)
=ax~@*D decays faster than any power law. Notice that in the
limit a— o we recover —2 as the exponent for the cumula-
tive probability distribution, which is exactly the same as the
exponential result.

We also investigate the event size distribution for power
law p(x) by solving the recursion relation in Eq. (26) numeri-
cally. Figure 8 shows the cumulative (large circles) and non-
cumulative (small squares) event size distributions for a
power law spark distribution with a=2 [i.e., p(x)=ax~@*V
=2x72]. For small / this leads to a cumulative probability
distribution of event sizes that has a shallower slope than the
corresponding data for the exponential spark density (Fig. 6)
but still a steeper slope than for larger events. The slope of
the cumulative distribution is close to the analytically calcu-
lated asymptotic value of a=-2a/(a+1)=-4/3 in the small
event limit (Appendix A). For large [ the slope is approxi-
mately —1. The corresponding data for the case a—1 [p(x)
~1/x] has slope —1 for the entire range of event sizes. Ad-
ditionally, solutions of the cuts model obtained for a power
law distribution of sparks has the feature that the large event
sizes [; increase at a slower rate than in the corresponding
exponential solution. Therefore we are able to see more
points in the tail of Fig. 8 and easily confirm the slope —1
that we derive analytically (Appendix A).

V. COMPARING MODELS

We next make more direct comparisons between the con-
tinunum PLR and cuts models. Despite the apparent differ-
ences, we show that there are a variety of cases where one
model can be used to approximate another. In these cases the
resulting power laws match. However, in doing this we face
several challenges:

e The PLR and continuum models use the expected event
size as the cost function: J=Zp,l; [yield function Y in Eq.
(15)]. The cuts model is most easily solved analytically for
the cumulative cost function J'=3pil; [yield function Y’ in
Eq. (17)], where pfzziéjSij‘

e The continuum and cuts models specify a probability
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density p(x) which is a continuous function of the spatial
position x, while the PLR model specifies condition catego-
ries i with discrete probabilities p; which have no a priori
association with a position x.

* The cuts and PLR models specify a set of discrete prob-
abilities p; and corresponding set of discrete event sizes [;,
while the continuum model uses only continuous p(x) and
I(x).

e The cumulative distribution P(=I) is an analytical func-
tion of the probability density p(/) only if the density is a
continuous function of event size. If instead the density p(/)
[or p;(1;)] is discrete, as it is for the cuts and PLR models,
there is no universal analytical relationship between the cu-
mulative and noncumulative distributions.

We address all these issues in the sections that follow.

A. Comparing results obtained for different cost functions

To reconcile the cost functions of the different models we
can either find solutions to a “J-cuts model” which uses the
original cost function J, or we can adapt the PLR model to
use the modified cost function J'. The recursion relation for
the cuts model with the cost function J, Eq. (16) is more
difficult to solve, but fortunately we can determine the
asymptotic behavior of this “J-cuts model” without solving
those equations. This is because the asymptotic results in the
simple exponential “J’-cuts model” [Egs. (22) and (23)] are
valid for both cost functions J and J'. In particular, the opti-
mal solutions {/;} are asymptotically equal for the two costs
(J',J) in the limits /;—o and /;— 0. Proof of this result is
given in Appendix B. This implies that our results for the
cuts model can be directly compared to the results for the
PLR and continuum models in these limiting cases, as shown
in Table I. Alternatively, we can modify the PLR model to
use the same cost function as the “J’-cuts model.” This is
particularly simple if the probability distribution of sparks
p(x) is exponential, since cumulative and noncumulative ex-
ponential distributions are proportional to each other.

B. Mapping of the PLR event categories to spatial positions

Although the PLR model has no inherent spatial nature,
we wish to compare it to other models which explicitly con-
tain functions of position. Therefore we must decide how to
associate the discrete probabilities p; in the PLR model with
positions x. In the PLR model, we derive scaling relations
between resources and event sizes by imagining that each
event category i is associated with a region of the same total
length L, inside of which the probability is a uniform p; as
illustrated in Fig. 3. (The length L is later divided up into
optimal event sizes [;.) This procedure is discussed in Sec.
1.

To construct a mapping from the event categories to the
real axis, we can use this length L to derive a right-
continuous piecewise constant probability function p(x) on
the real line, as illustrated in Fig. 9. We order the p; so that
they are monotonically nonincreasing, associate each cat-
egory i with a length L, and place the categories adjacent to
one another on the real line. Then p(x)=p; whenever x
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FIG. 9. We use the category size L to generate a piecewise
constant function p(x) of position x from the discrete set of prob-
abilities {p;} in PLR.

e[(i=1)L,iL]. We can then use PLR formalism to calculate
the optimal event sizes [; within each category. This defines
an event size function /(x) which describes the size of the
loss which occurs when a spark hits position x. We define
I(x)=1; whenever x € [(i—1)L,iL]. Note that L is the maxi-
mum possible event size in PLR and the large-scale cutoff A
is defined by L and the number of event categories n: A
=nL.

Intuitively, here it is helpful to think of the PLR model as
a coarse-grained version of the cuts model. The piecewise
constant spark probability density p"“R(x) can be viewed as
an approximation to some underlying continuous probability
density p"(x) which has been averaged to produce a con-
stant value over each interval of length L. As L becomes
smaller, PLR becomes a better approximation to the cuts
model with a continuous p(x).

C. Comparing PLR and cuts

The cuts and PLR models can compare in many regimes
because they both produce inherently discrete event size dis-
tributions. The spatial mapping of event categories to spatial
positions, and the approximation of a continuous p(x)
=p®(x) (for cuts) by a piecewise continuous p"R(x) com-
posed from the p,’s lead to excellent agreement between the
two models for a wide range of p(x). For the cuts model we
choose a continuous probability density

pcuts(x) — K2e—>\x_ (27)

For the PLR model we choose a probability density which is
piecewise constant on intervals of length L

PPR@) =K e N2 v e[(i-1)L, iL]  (28)

and chose these densities so that p“"**(x) matches p"R(x) at

the midpoint of each interval. The density pPR(x) can be
thought of as a coarse-grained average of p®*(x). Graphs of
these functions are shown in Fig. 10(a). We can trivially
modify the PLR model to use the same cost function J' be-
cause cumulative and noncumulative exponential distribu-
tions are proportional to each other, implying p!p;.

Next we use the PLR model to find the optimal /;, and
thus p;(l;) and P(=I;) for the spark probability density
pPR(x). We take L=1 and a large scale cutoff A which is
n=10 times larger than L. The cumulative probability
P(=1;) versus event size [; (large circles) is shown in Fig.
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FIG. 10. Comparing the PLR and cuts models. (a) Spark prob-
ability density functions on a semilog plot. The solid line represents
the piecewise constant function pPIR(x)=K,eM-VIL xe[(i
—1)L,iL],L=1,\=In(4), and the dashed line represents the con-
tinuous probability function p(x)=K,e ™, A=In(4). Constants K,
and K, are chosen so the probability densities are normalized on
x€[0,A=10]. (b) Cumulative probability P(=1;) versus event size
[; for the PLR model (large circles) and the cuts model (small
squares).

10(b). Note that P(=1;) has a exponent of —2, which is ex-
actly the same as the exponent for the noncumulative prob-
ability p,(/;). Again, this is due to the discrete nature of p,(/;)
and the exponential p(x) which is approximated by the piece-
wise constant pPR(x).

To obtain the corresponding solution for the event size
distribution of the cuts model, we use the recursion relation
[Eq. (18)] to compute the optimal /;, p(I;), and P(=1,) for the
continuous, exponential p(x)=p*(x). We choose the initial
cut positions based on our solution for the largest event ob-
tained for the corresponding PLR model above. In other
words, we take ¢;=A (the endpoint of the interval on the real
axis for the mapping of the PLR categories into position
space) and ¢,_;=A-1,, where [, is the largest event size in
the PLR model. We then iterate the recursion relation Eq.
(18) backward until we reach the cut at position x=0. The
cumulative probability P(=1;) versus event size [; (small
squares) is shown in Fig. 10(b). P(=[,) has a exponent of —2
in agreement with PLR for the same cost function J, and the
corresponding spark distributions p®(x) and pPtR(x).

Thus the cumulative probabilities for the cuts and PLR
models are remarkably similar. This indicates that even out-
side the asymptotic regime (/;,—0), the cuts model and the
PLR model match for an exponential spark probability den-
sity. Note that in this example we are still in the regime
where the cuts model solution P(=1,) versus /; has a slope of
—2 on a log-log plot—that is, the dense resource regime.

D. Connections between the continuum model and the discrete
PLR and cuts models

We next compare the continuum model, which has a con-
tinuous event size function /(x), with the cuts and PLR mod-
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els which both have a piecewise constant /(x), corresponding
to the discrete /; for these models (and the spatial mapping,
in the case of PLR). The continuum model cannot be ex-
tended outside of the dense resource regime, because it
builds in the assumption of a continuous event size function
[(x). Interestingly, all three models can be made to agree in
the dense resource limit. For the PLR and cuts models, these
correspond to regimes in which the piecewise constant func-
tion /(x) becomes nearly continuous. We begin by comparing
the continuum model to the cuts model. The cuts model pre-
dicts that for small event sizes (and thus dense resource al-
locations), the function /(x) will be close to continuous (as
shown in Fig. 5). We showed earlier in Eq. (23) that in the
limit /;— 0, the J'-cuts model predicts a power law with ex-
ponent —2. In Appendix B, we show that the solution for the
cuts model with the modified cost function J' is the same as
the solution for the cuts model with the original cost function
J in this limit. Therefore the cuts model matches the con-
tinuum model in the limit /;— 0, when the two models have
the same cost function J. Note that even though [(x) is ap-
proaching a continuous function, p(x) remains discrete, so
that the cumulative distribution of events P(=I) is in fact a
steeper power law than the density in this regime, as illus-
trated numerically in Fig. 6.

To compare the continuum model to PLR, we note that in
PLR, I(x) becomes close to continuous when the category
size L becomes small and the event sizes /; become very
small. Formally, this corresponds to the limit L—0 with
[;/L—0 for every [; and every L. Similar to the cuts model in
this limit, discrete PLR produces a nearly continuous event
size function I(x), although the event size probability density
pi(1;) remains sufficiently discrete that computing the cumu-
lative distribution P(=I;) does not simply correspond to a
unit increase in the exponent. Instead we must be cautious
and do additional work to compute the cumulative exponent,
we did for the PLR model in Eq. (23) and Appendix A.

In d=1 PLR predicts that the discrete event size probabil-
ity density is p;(1;) <%, regardless of the density at which
points in that density are sampled. Furthermore the PLR
model begins with the p; as input (solving for the /; by opti-
mizing resource allocations), so we must work with the den-
sity first, then solve for the cumulative distribution. Because
the p; and /; are discrete, there is no simple relationship be-
tween the density p;(/;) and the cumulative distribution
P(=1,). Naively, one might expect the cumulative probability
to be the integral of the probability density and guess
P(=1)=[". As we have stated previously, this is emphati-
cally not the case. Figure 11 is a numerical simulation of
PLR event categories mapped onto a spatial function p(x)
which is piecewise constant over intervals of length L. The
function p(x) is defined so that the left-hand end point of
each interval has a value which fits an exponential density
function. This figure shows p(l})*[;%, as predicted, yet
P(=1) 0<l{2 as well. In other words, the cumulative and non-
cumulative probabilities on a log-log plot both have a slope
of -2.

We show analytically why the cumulative and noncumu-
lative slopes match in this case. The PLR probabilities {p;}
are exponentially distributed: p;<e™"DL where L is the
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FIG. 11. Plot of probability density p(l;) (small squares), and
P(=1,) (large circles) versus event size [; derived from the PLR
model. The initial probability density p(x) is piecewise constant
function over intervals of length L=1. p(x) is defined so that the
left-hand end point of each interval has a value which fits an expo-
nential density.

category size, which is subdivided into regions of size /;. The
large scale cutoff A is L X n, where n is the number of cat-
egories. We calculate the cumulative probability

S G-

j=i

P(=1) =,
E e—)\(j—l)L
j=1

A/L

=3 MDA

j=i

A
1 .
= f e Mdy = —e MimDL o p; & l,-_z, (29)
(i-1)L A

where we have used the fact that because L — 0 the recipro-
cal of the norm A(L) approaches zero and we can approxi-
mate the sum as an integral. We also drop the term propor-
tional to e, which is much smaller than e DL Thus the
cumulative distribution is proportional to the noncumulative
distribution in this limit, and the continuum, cuts, and PLR
models all match in the regime where resources are dense
and event sizes are small.

E. PLR and cuts for large events

A final question is whether the PLR model is similar to
the cuts model in the limit of very large event sizes, where
the cuts model predicts P(=1;) has a exponent of —1. As we
mentioned earlier, in one dimension the PLR model predicts
pi(l;) li_2 for every /; and every L. However, cumulative dis-
tributions which result from discrete probability densities can
have any one of a large class of shapes and exponents. For
PLR to predict a cumulative slope P(=[;)>[;' (i.e., the same
as the cuts model for large events), the discrete PLR points
p(l;) must be sufficiently dense so that the summation of
those points approximates an integral. This occurs when /;
increases very slowly, or equivalently if the spark probability
density p(x) is very heavy tailed. For spark probability den-
sities p(x) (such as the exponential) which drop off quickly, /;
increases rapidly [see Eq. (18)] and PLR will not predict a
slope a=—1 for an individual optimized system.
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Interestingly, most data from complex systems like forest
fires [11] and web traffic [3] are sufficiently dense that an
integral approximation is reasonable. Cumulative slopes of
a=-1/d are consistent with the PLR model when interpreted
as in Sec. III. As previously mentioned, this might best be
explained by viewing these data sets as mixtures of data from
systems which are individually optimized. In this case a
probability density with a sparsely populated tail [such as
Fig. 6(a)] might be mixed with similar data so that the tail
becomes densely populated. This is precisely what is done in
for the cuts model in Fig. 7 and here the mixture power law
retains a=—1/d=-1. Thus it is possible that mixtures of
PLR models could be made consistent with the cuts model in
the limit of large event sizes. However, because PLR makes
analytical predictions only for noncumulative probability
densities p;(l;), in the absence of a more thorough analysis of
mixtures of PLR solution, we can draw no further general
conclusions about the behavior of cumulative probabilities
P(=1,) for large [; in this paper. Instead, we reserve this issue
for a more detailed analysis in [32].

VI. PATHOLOGIES OF THE LATTICE MODEL

Abstract forest fire models have arisen as paradigms in
complex systems theory, initially for the self-organized criti-
cality (SOC) mechanism [23,25,26] and later also for HOT
[1,3,11]. Inspiration for SOC comes from statistical physics,
where lattice models have played a central role in theoretical
explorations of large scale consequences of local interactions
[28]. HOT is motivated by biology and engineering, where
lattice models are a less natural starting point. Nonetheless,
in an effort to clarify comparisons between the mechanisms,
and because of their pedagogical explanatory power, study of
HOT also began with lattice models. However, in the limit of
large lattices, the HOT lattice model can become somewhat
pathological, which led to the alternative HOT models ana-
lyzed in this paper. In this section we discuss the nature of
this pathology. It arises in what corresponds to a natural limit
for percolation in statistical physics that goes awry in the
analogous HOT model, because the difference in scaling be-
tween the d-dimensional contiguous regions, and the (d—1)-
dimensional barriers.

SOC builds on the concept of criticality in statistical
physics. The percolation phase transition is associated with a
critical density of occupied sites, at which a connected clus-
ter of nearest neighbor occupied sites first spans the lattice
(say, from top to bottom) in the limit of infinite lattice size.
Infinitesimally above the critical density, the infinite cluster
exists with probability converging to unity as the lattice size
diverges. Simultaneously the probability any given site is
connected to the infinite cluster converges to zero. This oc-
curs because the infinite cluster is a fractal. An immediate
consequence of the fact that the fractal dimension is less than
the lattice dimension is that removal of the infinite cluster
(i.e., in the largest possible fire) does not alter the lattice
density even though the cluster is system spanning (i.e.,
would stretch across the entire forest). At the critical density,
and only at the critical density, the distribution of cluster
sizes in the ensemble is described by a power law.

016108-12



HIGHLY OPTIMIZED TOLERANCE AND POWER LAWS...

In statistical physics power law predictions are typically
sharpened by taking the limit of infinite lattice size. How-
ever, in attempting this for the HOT lattice model a problem
emerges, that makes the large lattice limit ill posed. This also
reveals more clearly an intrinsic flaw in the lattice model
when it comes to modeling mechanisms and costs associated
with suppression of fires and other cascading events in
highly designed or evolved systems [6]. Consider the lattice
model in d=2. In both the HOT and SOC Ilattice model a
firebreak forms when any unbroken chain of empty lattice
sites isolates a connected cluster, even if the chain is only
one lattice spacing wide. In SOC (and criticality) the under-
lying randomness with which configurations are generated,
and the symmetry between vacant and occupied sites, results
in a critical density of 0.4 (0.59) in d=2 which is bounded
away from unity, so that a finite fraction of the lattice is
devoted to both clusters and firebreaks in the limit of infinite
size. In other words, the size of the firebreaks scales in the
same way as the size of the connected clusters. However, in
the HOT version, simple optimization of yield (number of
trees remaining after a single spark, averaged over the spark
distribution) leads to macroscopic, compact clusters of trees
separated by narrow (one lattice spacing wide), efficient (lin-
ear) firebreaks. Thus in the limit of large lattices the cost in
density and yield associated with each firebreak becomes
vanishingly small.

To visualize how the cost of firebreaks becomes negli-
gible for large lattices and why this is a problem, consider
large N X N lattices as N— . A vertical line of empty sites
extending from top to bottom on the lattice involves N sites,
and so the cost in lattice density associated with making
those sites vacant is N/N*>=1/N. This cut divides an other-
wise fully occupied lattice into two separate regions (left and
right of the firebreak). In the limit N — oo, the cost in density
of the cut is zero, even though the division of the lattice into
two separate regions is preserved. Similarly, a collection of
equally spaced vertical and horizontal cuts on an otherwise
occupied lattice results in a gridded configuration dividing
the lattice into square regions of equal size, each outlined by
a firebreak one lattice spacing wide on each of the four sides.
For this configuration, all fires are of equal size (the area of
the contiguous square). For a finite lattice such a solution
could only be optimal for a spatially uniform distribution of
sparks. However, in the limit N—o an infinite family of
such solutions all achieve the maximum yield of unity. All
that is required is that the cuts be positioned far enough apart
that the grid of firebreaks consume zero density, yet close
enough together that the density cost associated with a fire in
any individual square of contiguous occupied sites is also
zero. This is achieved whenever the spacing between grid
lines scales like N7 with 0<<y<1. This produces a yield of
unburnt trees that is asymptotically perfect (i.e., approaches
unity) for the entire forest for any distribution of sparks, with
infinitesimal fire sizes.

It is straightforward to generalize this argument to higher
dimensions, because it relies only on the fact that the barriers
scale differently (like d-1) compared to the the compact re-
gions (like d). Unrealistically, a literal interpretation of the
lattice model suggests that with proper management and
minimal cost, essentially all fires could be eliminated [6].
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While this form of the HOT lattice model is useful pedagogi-
cally as it exhibits such striking differences from the SOC
version, it has too many flaws to be taken literally as a model
of real forest fires because the costs of resources for suppres-
sion are not accounted for properly. While there is a natural
duality between vacant and occupied sites in the models of
statistical physics, in HOT models vacancies are resources
which define boundaries that scale differently than the bulk
substrate. For specific applications, resources are rarely (if
ever) simply the absence of substrate. Even firebreaks con-
structed on forest land (e.g., roads) are not simply the ab-
sence of trees, but are cut and maintained at significant eco-
nomic expense.

VII. DISCUSSION

The abstract HOT models studied in this paper correct the
pathology of the original HOT lattice model by explicitly
accounting for resource use. The PLR and cuts models do
this through an explicit cap on the total resources available.
The continuum model does this through inclusion of an ex-
plicit resource cost term in the yield function. Several pre-
liminary calculations suggest that at least within a range of
functional representations, the specific manner in which re-
sources are accounted for is not a crucial factor in determin-
ing the exponent in the power law for these models. For
example, a more general cost-benefit term describing re-
source use can replace the explicit cap on resources in the
PLR model, at the expense of analytical tractability of the
model, but with no significant change in the exponent.
Analogously, the cuts model (in the limit of small event
sizes) and the continuum model can lead to the same power
law exponent, in spite of the fact that they account for the
cost of resources in different ways.

The key feature in determining the size distribution for a
given model is that we optimize, while measuring the cost
(or loss) in terms of the average event size. Alternative for-
mulations of the continuum model [1,6] have considered al-
ternative cost or utility functions, which clearly can lead to
modifications in the event size distribution. For example, if
the cost function puts a large penalty for events greater than
a given size, then more resources will be devoted to large
events, at the expense of smaller events, and a great average
size. Such considerations are clearly relevant in cases such as
finance and economics, where risk-seeking and risk-averse
strategies come into play.

Compared with models based on criticality, the power
laws predicted by all of the HOT models are much steeper,
and have the opposite trends with dimensionality. In critical-
ity the exponents become smaller for lower-dimensional
problems. This is the opposite of the trends observed in data
[3], which typically exhibit steeper power laws for lower-
dimensional problems, as in HOT. It is worth noting (espe-
cially given our focus on d=1) that while percolation in d
=1 has the (trivial) critical density of unity—the only way
connectivity can arise across a one-dimensional lattice is for
every site to be occupied—the configurations and size distri-
bution (not a power law in d=1) which arise in random
percolation in the neighborhood of the critical density even
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in that case are completely unlike those that arise in the
corresponding one-dimensional HOT lattices. In criticality,
the placement of vacancies is random, whereas in HOT the
specific placement of vacancies is dictated by optimization.
In fact, percolation lattices at the critical density can be in-
terpreted as systems where only a single parameter (the den-
sity) has been optimized. Adding more tunable parameters,
or design degrees of freedom to the system generates optimal
solutions which are increasingly refined spatial patterns [5].
In other words, more tunable system parameters allow better
optimization, resulting in higher yields. In this sense, SOC
lattice models are HOT models with only a single “handle.”

In models based on criticality, the self-similar, fractal
event shapes, reflect a mechanism which is intrinsically scale
free, producing a single exponent, spanning all scales. In
contrast, in HOT models heavy-tailed distributions arise
from optimization on a macroscopic scale. Compact regions
predicted by HOT are not fractal or self-similar and there is
no reason to expect that small scale events will a priori be
described by the same power law as large scale events.

The cuts model is a clear example in which we do observe
a heavy-tailed event size distribution, with asymptotically
different power law exponents as we vary the scale. This
model highlights the essential difference between the dense
and sparse resource regimes, which in the original formula-
tions of the continuum and PLR models emerge from the
distinction between inherently continuum and discrete fields
describing probabilities, resources, and losses. In the con-
tinuum case, it is simply not possible to capture features
which could arise as a consequence of discrete, sharp, well-
separated boundaries—the sparse resource regime. Thus the
continuum model agrees with the cuts model only in the
limit that the cuts (which are sharp and discrete) are placed
asymptotically close together, i.e., the dense resource limit.
On the other hand, the PLR model, which assumes discrete
event categories, can in principle capture both the dense re-
source limit and the sparse resource regime, though the latter
will need additional treatment because of the intrinsic role
that mixtures play in real data. In this paper we explored the
PLR model in the limit of dense resources, by taking the
length scales of the system L and the event sizes /;,/L simul-
taneously to zero. In this limit, the PLR model can capture
the the continuous, spatial spark distribution p(x), though
PLR (and cuts) remain intrinsically discrete.

Based on this analysis, it may appear that the cuts model
is the clear winner, simultaneously capturing the full range of
behaviors seen in the other two, and this would be true if we
only considered d=1. However, in order to generalize the
cuts model beyond d=1 it is necessary to constrain the opti-
mization procedure. For example, in [1] this was done by
specifying a grid design. In many cases, such a constrained
design may not be desirable, and the abstractions of the other
models may be preferred. The continuum and PLR models
are both easily formulated in arbitrary dimension d, but with
different predictions for the exponents. As we have shown
here, the PLR model can be extended to the dense resource
regime, where it agrees with the predictions of the con-
tinuum model. The reverse is not the case. In that sense, the
continnum model is less flexible. Furthermore, the PLR
model has been far more successful in capturing statistics of
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event size distributions, assuming data sets are dense enough
to be described as continuous distributions (e.g., assuming
they are mixtures [32]). Examples which have been studied
include world wide web traffic, forest fires, and power out-
ages [3,4,10].

In comparison, we do not yet have any clear examples
where the predictions of the continuum model have been
shown to apply. Perhaps the reason behind this lies in the fact
that data is almost exclusively collected for large events in
the sparse resource regime. In regimes where resources are
abundant, one may simply choose not to optimize. Small file
downloads, fires, and outages are rarely monitored, and small
scale cutoffs, whether deliberately imposed for convenience
or arising from an inherent physical mechanism, tend to pre-
vent detailed statistical analysis of this regime. In any case,
statistical distributions remain only a starting point for un-
derstanding mechanisms for complexity and modeling sys-
tem failure. Success arises from the study of simple models
when their predictions capture aspects of the system which
can be described and quantified at a relatively low resolution.
From this initial success, they can inspire a sequence of
higher resolution models and observations to understand and
anticipate detailed mechanisms for cascading failure in natu-
ral and technological systems.
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APPENDIX A: ASYMPTOTIC LIMITS OF THE CUTS
MODEL FOR A POWER LAW INITIAL PROBABILITY
DENSITY

In this appendix we derive the slope of P(=[,) on a log-
log plot for a cuts model where the initial probability density
is described by a power law, p(x)=ax~**D. First we use the
cuts model to find an analytical description for the set of
discrete probabilities p; and event sizes ;

pi=(cio)™ = ()™,

_ (cii)™=(c)™

= ate) v

We also recall the definitions for the cuts positions c; and
the cumulative probabilities pi=P(=1))

C;=Ci1 +li’

pi=P(=1)=(ci.)™ (A2)

The slope of P(=[,) on a log-log plot can be calculated in
limiting cases by dividing A In p! by A In/;, Taylor expand-
ing and dropping higher order terms.
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Alnp; Inpj,—Inp; —aln(c,_y+1)+aln(c;)
Aln li B In l,-+1—ln l,' B Ci__al—(Ci_l'Fl[)_a
Inf ————75 [ -In/;
alciy +1)™

(A3)

Now we will assume that /; is small compared to ¢;_; and
we will derive terms which can be Taylor expanded to first
order in [;/(c;_;). We first evaluate numerator of Eq. (A3)

{C:ﬁ = (i +1)™
In| ———————————

a(ciy + li)_(a+1)
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l;
—aln(ci_;+)+aln(ci;))=alnci;—aln| 1+ —
Ci-1

l;

+aln(ci_))=-a ln(l + —)
Ci-1

(A4)

Now we evaluate the denominator

I \™
]—lnli:—lna_lnli'f'(a'f' 1)1n(Ci_1+ll')—a1nci_1+1n<1—(1+_) )

Ci

=—In(aly) + (a+ Dinci_; + (a + l)ln<1 + L) —alnc,; +ln[1 - (1 + L)_a]. (A5)

Ci1 Ci1

We assume /;/c;_; <1 and use the binomial expansion on the last term. Then Eq. (A5) becomes

4 (e, + 1) -
h{w} ~In li=ln<c'—ll> +(a+ 1)1n(

alciy + 1)~ al;

=ln<£> +(a+ 1)ln<

al,»

Ci

Inserting the numerator and denominator back into Eq. (A3)

we have
1 (1 + Ui )
— n —_—
Alnp; “ Cioy
Alnl, I 0/ .\
T s l)ln<1 +—l> +ln{1 —M<—)J
Ci1 2 Ci1
(A7)
Now we use the Taylor expansion In(1+€)=e+O(€)
Li
_a—
Alnp' .
npl —_ Ci—1 , (AS)
Alnl; [ (a+1)[ I
(a+ )| —)-——
Ci1 2 Ci1
Alnp! -2a
—t=— A9
Alnl; a+1 (A9)

This is the slope of P(=[;) on a log-log plot in the limit
where [ becomes small.

Now we will look in the opposite limit, where / becomes
large. We first show that /— o implies (c;_;)/[;—0 if a>1.
Using the definition for /;,; in Eq. (A1) we derive a recursion
relation for ¢;/l;, = g;.

By definition

l; ) { { al, a(a+1)< l; )2]}
l+— |+Im1—-|l—-——+——|—

Ci1 Ci1 2 Ci-1

[; l; +1)( [
1+—’)+1n{ﬁ{1—(a )<—’)”

Ci-1 Ci-1 2 Ci-1

=(a+1)1n(l+i>+ln(l—w).

A6
2, (A6)
|
¢ acic)(c)”!
§i="= Na_ (\a
liv1 (Ci—l) - (Ci)
_ alei +1)™
(i) = (e + 1)
az,.‘“<E + 1>_a
e ]
I I
1+ 1)™
a(gz—l ) (AIO)

Tl = (g + )T

We note that g; will always be less than 1. Therefore we can
use the binomial expansion and write out the terms to lowest
order in g;_i:

ez 4062
(gio) ™ =[1-agi+ 0(852—1)] -

8i (A11)

Now we note that if we assume g;_; <1 for large i we can
drop all terms of order g7 ,. Also, for > 1 the first term in
the denominator will be much larger than the other terms,
and we drop all the other terms in the denominator. Then we
have
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a(l-ag;_y) u a
gi= - =alg) +aX(g )™, (Al12)
(gi-1)
We can then find the ratio of consecutive terms
gilgio =algi )" +a*(g;i )" (A13)

Because g;<<1 for all g;, we see that our assumption that g;
<1 was indeed valid, and that the sequence goes to zero as i
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approaches infinity. We also note that if <1, we can no
longer assume that the first term in the denominator in Eq.
(A11) is much larger than 1. In fact, as a— 0 the first term in
the denominator approaches 1, and it is not true that (c;_;)/1;
approaches zero for large /;.

We now solve Eq. (A3) for terms which we can Taylor
expand to first order in (c,_;)/l;. First we simplify the
numerator

Ci-1
—aln(ci_;+1)+aln(ci))=—alnl,—aln 7 +1|+alnc;_,

1

Ci-1
=a ln<l—) -a ln<

—+1)=aln|—|+y—a|l— | +0| — ,
» L L L

(A14)

where in the last line we have used the Taylor expansion In(1+€)=e+O(€%). As (c,_;)/1; approaches 0, In(c;_;)/l; becomes
large and negative, and the terms inside the braces in Eq. (A14) become negligible. Therefore the numerator in this limit is

Alnpﬁzaln(%)

We simplify the denominator of Eq. (A3).

'—a _ - +li —-a - . —-a - —a
IH[M}_]nli:—ln(ali)—(a+l)ln<%+1)+(a+1)1nli—a1nli+ln[(%> _(u+1> }
1 i

a(ciy + li)_(aH)

1

Again we use the binomial expansion to approximate the last term in the denominator

m[(ﬁ)_a—(ﬁ+
i i

-] (o)

where in the last line we have used that [(c;_;)/[;]7*>1>[(c,_;)/1;]. Then the denominator (Eq. (A16)) becomes

._a _ i +li —-a - . =a
ln{%]—lnli=—lna+(a+l)ln(u+1>+ln{<u> }
a(eiy +1)7" l; l;

=-a ln(E
I

=—aln(i—_

where in the last line we used the Taylor expansion for
In(1+€). Again we see that for any finite a the terms inside
the braces in the last line of Eq. (A18) become negligible
compared to In[(c;_;)/1;] in the limit that [(c,_;)/[;] becomes
small. In this limit the denominator can be approximated as

Alnl=—-a 1n(%> (A19)

i

Dividing Eq. (Al5) by Eq. (A19), we see that for small
(¢;i21)/1;, the slope of P(=[) on a log-log plot is

(A15)
l;
(A16)
ac; i) i |
l—l—li_l+a(a+1)<ll—;l>] Zln{(}—:l> }7 (A17)
>+(a+1)ln<%+l)—ma
c lC it \?
- >+ —(a+1)[%+0(f) }—lna , (A18)
!
Alnp;
Alnl; =-L (A20

We have shown that if a, the exponent for the power law
spark distribution, is greater than 1, then (c,_;)/l; becomes
small as /; becomes large. In this case we have shown —1 to
be the asymptote of the exponent of P(=[) for large /.

APPENDIX B: OPTIMAL SOLUTIONS FOR TWO
DIFFERENT COST FUNCTIONS

We are interested in comparing the optimal solutions for
two different cost functions [equivalently, for two different
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yield functions Y in Eq. (15) and Y’ in Eq. (17)]. The first
cost function J=2p;l; equates cost with expected event size,
and is used in PLR and continuum models. The second cost
function J'=3pil; equates cost with expected transferred
event size and is used in the cuts model. This situation arises
when the frequency with which an event is “transferred” is
equal to the cumulative probability of all larger events. One
example is sequentially linked web files. Though J' is less
intuitive than J, it has the very nice property that one can
analytically solve for the optimal event sizes /; given cost
function J'. In most situations, however, we are really inter-
ested in optimizing the original cost function J.

In this section we will show that the optimal solutions {/;}
are the same for either definition of cost (J?,J) in the limits
l;— o and [;— 0. This allows us to directly compare analyti-
cal results from the cuts model with results from continuum
and PLR models in limiting cases.

First, we recall that optimizing J leads to a recursion re-
lation for optimal event sizes /;

pi+lip(c) = piri] =L (cy) (B1)

while optimizing J' leads to a different recursion relation.

pi=lip(cy). (B2)

Comparing Egs. (B2) and (B1), we see they give the same
result if the bracketed term in Eq. (B1), e=Ip(c;)—pjsi, iS
much smaller than p;. First we will show this is the the case
in the limit /;— 0.

We want to show

e=1ip(c;) = pir1 <p;

lip(c)) < pi+Ppisi- (B3)
We can rewrite the right-hand side as
Cirl
PitDis1= f P(X)dx =pavg(li+1, + li)a (B4)

Ci-1
where p,,, is the average value of p(x) on the interval

[ciorscin]-
Then Eq. (B3) can be rewritten as
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[p(ci) _pavg]li < pavgli+l . (BS)

We use the recursion relation for the event sizes given by
Eq. (21)

eMi—1

N (B6)

lig1=
In the limit [;—0 this implies /;,;=/;+O(I?). Neglecting
terms of order /2 we have

[p(ci) _pavg] <pavg' (B7)

The position c¢; approaches the midpoint of the interval
[ci1,¢iv1] because [, — [;. As the length of the interval goes
to 0, the value of p(x) at the midpoint p(c;) approaches the
average value of p(x) over the interval. Therefore the left-
hand side of Eq. (B7) is negligible compared to the right-
hand side. In the limit /;— 0, € is much smaller than p;.

Now we will show that this is the case for the limit as /;
— oo, Starting from Eq. (B3) we again want to show

Cirl
Lip(c;) < pi+pi= f p(x)dx. (B8)

Ci-1

Substituting Ae™ for p(x) we have

li)\e—}\cl- < _e—)\cHl + e_}‘ci—l < e_)\ci—l(g_)‘(li"'liﬂ) + 1) < 6‘_)\Cf’1,

(B9)
where we have used ¢™™i< 1. Then we have
ln()\ll) - )\Ci < - )\Ci—l
log o(NL,) < M. (B10)

For [;— o and \ fixed, In(\/;) is negligible compared to
\l;. Therefore in the limit /;— %, € is much smaller than p;.

Therefore in these two limits, optimizing J’ results in the
same optimal event sizes as optimizing J.

[1]7J. M. Carlson and J. Doyle, Phys. Rev. E 60, 1412 (1999).

[2] J. M. Carlson and J. Doyle, Phys. Rev. Lett. 84, 2529 (2000).

[3]J. Doyle and J. M. Carlson, Phys. Rev. Lett. 84, 5656 (2000).

[4]J. M. Carlson and J. Doyle, Proc. Natl. Acad. Sci. U.S.A. 99,
2538 (2002).

[5] D. Reynolds, J. M. Carlson, and J. Doyle, Phys. Rev. E 66,
016108 (2002).

[6] M. E. Newman, M. Girvan, and J. D. Farmer, Phys. Rev. Lett.
89, 028301 (2002).

[7] T. Zhou and J. M. Carlson, Phys. Rev. E 62, 3197 (2000).

[8] X. Zhu er al., Proc. IEEE INFOCOM 01, Vol. 3, Anchorage,
Alaska (IEEE, New York, 2001), pp. 1617-1626.

[9] A. Fabrikant, E. Koutsoupias, and C. Papadimitriou,Proceed-

ings of the 29th International Colloguium on Automata, Lan-
guages, and Programming, Malaga, Spain (Springer, New
York, 2002).

[10] M. D. Stubna and J. Fowler, Int. J. Bifurcation Chaos Appl.
Sci. Eng. 13, 237 (2003).

[11] M. Moritz, M. Morias, J. M. Carlson, J. Doyle, and L. Sum-
merall (unpublished).

[12] M. Csete and J. Doyle, Science 295, 1664 (2002).

[13] M. Csete and J. Doyle, Trends Biotechnol. 22, 446 (2004).

[14] J. Stelling, U. Sauer, Z. Szallasi, F. J. Doyle, and J. Doyle, Cell
118, 675 (2004).

[15] C. Robert, J. M. Carlson, and J. Doyle, Phys. Rev. E 63,
056122 (2001).

016108-17



MANNING, CARLSON, AND DOYLE

[16] W. Feller, An Introduction to Probability Theory and Its Ap-
plications, Vol. 2 (Wiley, New York, 1971).

[17] N. L. Johnson, S. Kotz, and N. Balakrishnan, Confinuous
Univariate Distributions, Vol. 1, 2nd ed. (Wiley, New York,
1994).

[18] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian
Random Processes: Stochastic Models with Infinite Variance
(Chapman and Hall, New York, 1994).

[19] B. B. Mandelbrot, Fractals and Scaling in Finance: Disconti-
nuity, Concentration, Risk. (Springer-Verlag, New York, 1997).

[20] M. Mitzenmacher, Internet Math. 1, 226 (2003).

[21] W. Willinger, D. Alderson, J. C. Doyle, and L. Li. More, in
Proceedings of the 2004 Winter Simulation Conference, edited
by R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters
(IEEE, Washington, D.C., 2004).

[22] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381
(1987).

[23] P. Bak, How Nature Works: The Science of Self-Organized
Criticality (Springer-Verlag, New York, 1996).

PHYSICAL REVIEW E 72, 016108 (2005)

[24] B. D. Malamud, G. Morein, and D. Turcotte, Science 281,
1840 (1998).

[25] K. Chen, P. Bak, and M. H. Jensen, Phys. Lett. A 149, 207
(1990).

[26] B. Drossel and F. Schwabl, Phys. Rev. Lett. 69, 1629 (1992).

[27] T. Zhou, J. M. Carlson, and J. Doyle, Proc. Natl. Acad. Sci.
U.S.A. 99, 2049 (2002).

[28] D. Stauffer and A. Aharony, Introduction to Percolation
Theory (Taylor and Francis, Bristol, PA, 1985).

[29] C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948); 27, 623
(1948).

[30] T. M. Cover and J. A. Thomas, Elements of Information
Theory (Wiley, New York, 1991).

[31] G. J. McLachlan and D. Peel, Finite Mixture Models (Wiley,
New York, 2000).

[32] M. Manning, T. Brookings, J. M. Carlson, and J. Doyle (un-
published).

[33] For a>2, p(x) has finite variance, i.e., a “light tail,” and is no
longer a stable law.

016108-18



